Introduction

- Crowdsourcing provides huge opportunities and scalability solutions for grading large scale tasks, such as MOOCs.
- Reliability and quality of graders and crowdsourced data are challenging issues.
- Workers might give random grades, which are spam; or provide biased grades, which need to be corrected.
- The budget for hiring graders is limited, in many cases.

Grading through Crowdsourcing Applications

Grading large scale classes (MOOCs)

Thousands of students submissions

Labeling kid-friendly images

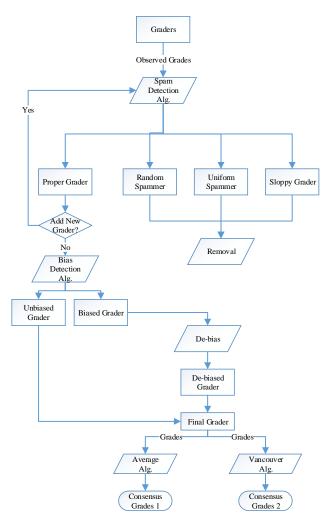
No adult content?

Content requires parental guidance? Mainly for adults ...

Research Purpose

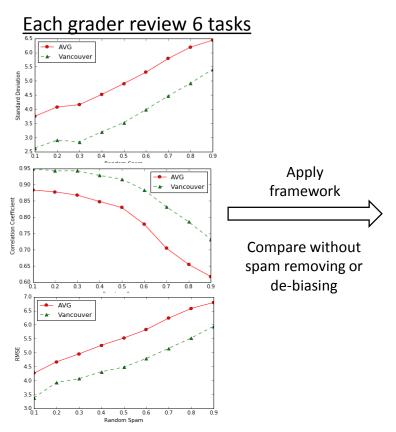
- Examine the influence of the spammers on grading complex tasks
- Build a crowdsourcing framework to combine spam detection and de-biasing algorithms to optimize the estimated true grades
- Analyze impact of the graders' number on the estimated true grades
- Optimize the cost by reducing the number of graders

Methodology



Experimental Results

• Evaluation Metrics – standard deviation (σ); coefficient correlation (ho) ; RMSE



Metrics			σ	ρ	RMSE
Subm_grades =4	AVG	Spam	6.13	0.77	6.86
		Spam Filter	3.79	0.95	3.50
		Spam Filter+Debias	2.80	0.96	2.93
	Vancouver	Spam	5.63	0.83	5.82
		Spam Filter	3.97	0.92	4.20
		Spam Filter+Debias	3.09	0.95	3.23
Subm_grades =6	AVG	Spam	4.96	0.85	6.02
		Spam Filter	2.93	0.95	3.34
		Spam Filter+Debias	2.41	0.97	2.60
	Vancouver	Spam	4.12	0.90	4.90
		Spam Filter	3.03	0.95	3.77
		Spam Filter+Debias	2.91	0.96	3.20
Subm_grades =10	AVG	Spam	4.13	0.91	4.79
		Spam Filter	2.10	0.97	2.96
		Spam Filter+Debias	1.88	0.98	2.43
	Vancouver	Spam	2.55	0.96	3.60
		Spam Filter	2.23	0.97	3.01
		Spam Filter+Debias	1.96	0.97	2.89

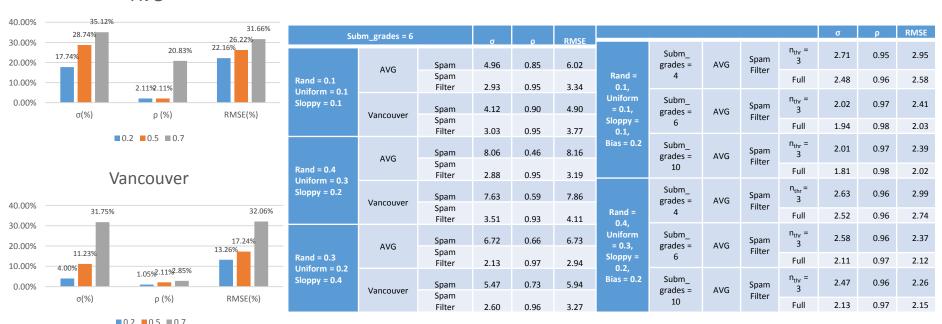
Impact of spam proportion on estimated true grades

Experimental Results

Impact of different ratios of biased graders

Impact of different rations of spammers

Different num. of new graders added



Conclusion

• With the framework, we are able to obtain significant improvement up to 32%.

• Fewer graders could be used to get estimated true grades without significant difference compared to original settings for the number of graders.