Introduction

* Crowdsourcing provides huge opportunities and
scalability solutions for grading large scale tasks,
such as MOOCs.

* Reliability and quality of graders and crowdsourced
data are challenging issues.

* Workers might give random grades, which are
spam; or provide biased grades, which need to be
corrected.

* The budget for hiring graders is limited, in many
cases.



Grading through Crowdsourcing
Applications

» Grading large scale classes (MOOQOCs)

O o Thousands of students submissions

No adult content?

Content requires parental guidance?

Mainly for adults ...




Research Purpose

* Examine the influence of the spammers on grading
complex tasks

* Build a crowdsourcing framework to combine spam
detection and de-biasing algorithms to optimize the
estimated true grades

* Analyze impact of the graders’ number on the
estimated true grades

e Optimize the cost by reducing the number of
graders
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Correlation Coefficient

Standard Dewiation

RMSE

Experimental Results

* Evaluation Metrics — standard deviation (o); coefficient correlation (p) ; RMSE

Each grader review 6 tasks
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Experimental Results

Impact of different ratios of biased Impact of different rations of spammers Different num. of new graders added
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Conclusion

 With the framework, we are able to obtain
significant improvement up to 32%.

* Fewer graders could be used to get estimated true
grades without significant difference compared to
original settings for the number of graders.



